	Anand Niketan	
Grade : X	Saninagar Campus	
Name :	Subject : Mathematics	Date : 03/07/2019

1. A bag contains 9 black and 12 white balls. One ball is drawn at random. What is the probability that the ball drawn is black?
2. Find the probability that a number selected from the numbers 1 to 25 which is not a prime number when each of the given number is equally likely to be selected.
3. A bag contains 10 red, 5 blue and 7 green balls. A ball is drawn at random. Find the probability of this ball being not a blue ball.
4 Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is less than 9 .
4. Cards, marked with numbers 5 to 50 , are placed in a box and mixed thoroughly. A card is drawn from the box at random. Find the probability that the number on the taken out card is:
(i) a prime number less than 10 .
(ii) a number which is a perfect square.
5. Two different dice are tossed together. Find the probability:
(i) That the numbers on either die is even.
(ii) That the sum of numbers appearing on the two dice is 5 .
6. From a well shuffled pack of playing cards, black jacks, black kings and black aces are removed. A card is then drawn from the pack. Find the probability of getting.
(i) a red card
(ii) not a diamond card.
7. Two dice are thrown simultaneously. What is the probability that
(i) 5 will not come up on either of them?
(ii) 5 will come up on at least one?
(iii) 5 will come up at both dice?
8. A bag contains cards which are numbered from 2 to 90 . A card is drawn at random from the bag. Find the probability that it bears.
(i) a two-digit number
(ii) a number which is a perfect square.
9. Cards numbered 1 to 30 are put in a bag. A card is drawn at random from this bag. Find the probability that the number on the drawn card is:
(i) not divisible by 3 .
(ii) a prime number greater than 7 .
(iii) not a perfect square number.
10. The LCM and HCF of two numbers are 240 and 12 respectively. If one of the numbers is 60 , then find the other number.
11. The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45 , write the other number.
12. Using Euclid's division algorithm, find the HCF of 56, 96 and 404.
13. Find the HCF of 52 and 117 and express it in form $52 x+117 y$.
14. Prove that $\mathrm{x}^{2}-\mathrm{x}$ is divisible by 2 for all positive integer x
15. If m and n are odd positive integers, then $\mathrm{m}^{2}+\mathrm{n}^{2}$ is even, but not divisible by 4 . Justify.
16. $\operatorname{If} \operatorname{HCF}(6, a)=2$ and $\operatorname{LCM}(6, a)=60$, then find a.
17. Find the greatest number of 5 digits exactly divisible by 12,15 and 36 .
18. Find the smallest number which when increased by 20 is exactly divisible by 90 and 144 .
19. Find the smallest number which leaves remainder 8 and 12 when divided by 28 and 32 respectively.
20. Floor of a room is to be fitted with square marble tiles of the largest possible size. The size of the room is $10 \mathrm{~m} \times 7 \mathrm{~m}$. What should be the size of tiles required that has to be cut and how many such tiles are required?
21. For what value of $p,(-4)$ is a zero of the polynomial $x^{2}-2 x-(7 p+3)$?
22. Find the quadratic polynomial whose zeroes are 1 and -3 . Verify the relation between the coefficients and the zeroes of the polynomial.
23. If α and β are zeroes of the quadratic polynomial $x^{2}-6 x+a$; find the value of ' a ' if $3 \alpha+2 \beta=20$
24. If the polynomial $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ is divided by another polynomial $x^{2}+5$, the remainder comes out to be $\mathrm{px}+\mathrm{q}$. Find the value of p and q .
25. Using division algorithm, find the quotient and remainder on dividing $f(x)$ by $g(x)$, where $f(x)=6 x^{3}+$ $13 x^{2}+x-2$ and $g(x)=2 x+1$
26. Find the zeroes of the quadratic polynomial $4 x^{2}-4 x-3$ and verify the relation between the zeroes and its coefficients.
27. Find all the zeros of the polynomial $x^{4}+x^{3}-34 x^{2}-4 x+120$, if two of its zeroes are 2 and -2 .
28. If the product of zeroes of the polynomial $a x^{2}-6 x-6$ is 4 , find the value of ' a '.
29. If one zero of the polynomial $\left(a^{2}-9\right) x^{2}+13 x+6 a$ is reciprocal of the other, find the value of ' a '.
30. Find the quadratic polynomial, the sum of whose zeroes is 8 and their product is 12 . Hence, find the zeroes of the polynomial.
31. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2 respectively.
32. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$, then find the value of a.
33. If $(x+a)$ is a factor of $2 x^{2}+2 a x+5 x+10$ find a.
34. Prove that the parallelogram circumscribing a circle is a rhombus.
35. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.
36. In two concentric circle, a chord of the larger circle touches the smaller circle. If the length of this chord is 8 cm and the diameter of the smaller circle is 6 cm , then find the diameter of the larger circle.
37. Prove that the angle between the two tangents to a circle drawn from an external point is supplementary to the angle subtended by the line segment joining the points of contact at the centre.
38. $A B C$ is an isosceles triangle, in which $A B=A C$, circumscribed about a circle. Show that $B C$ is bisected at the point of contact.
39. Two concentric circle have a common centre O . The chord AB to the bigger circle touches the smaller circle at P . If $\mathrm{OP}=3 \mathrm{~cm}$ and $\mathrm{AB}=8 \mathrm{~cm}$ then find the radius of the bigger circle.
40. Given two concentric circle of radii 10 cm and 6 cm . Find the length of the chord of the larger circle which touches the other circle.
41. Two tangents PA and PB are drawn from an external point P to a circle with centre O . Prove that AOBP is a cyclic quadrilateral.
42. In a right $\triangle \mathrm{ABC}$, right angled at $\mathrm{B}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{AB}=12 \mathrm{~cm}$. The circle is touching the sides of $\triangle \mathrm{ABC}$. Find the radius of the circle.
